Reinforcement Learning of a Morphing Airfoil-Policy and Discrete Learning Analysis

نویسندگان

  • Amanda Kathryn Lampton
  • Adam Niksch
  • John Valasek
چکیده

An episodic unsupervised learning algorithm using the Q-Learning method is developed to learn the optimal shape and shape change policy of a morphing airfoil. Optimality is addressed by reward functions based on airfoil properties such as lift coefficient, drag coefficient, and moment coefficient about the leading edge representing optimal shapes for specified flight conditions. The reinforcement learning as it is applied to morphing is integrated with a computational model of an airfoil. The methodology is demonstrated with numerical examples of a NACA type airfoil that autonomously morphs in two degrees of freedom, thickness and camber, to a shape that corresponds to specified goal requirements. Due to the continuous nature of the thickness and camber of the airfoil, this paper addresses the convergence of the learning algorithm given several action step sizes. Convergence is also analyzed with three candidate policies: 1) a fully random exploration policy, 2) a policy annealing from random exploration to exploitation, and 3) an annealing discount factor in addition to the annealing policy. The results presented in this paper show the inherent differences in the learned action-value function when the state space discretization, policy, and learning parameters differ. It was found that a policy annealing from fully explorative to almost fully exploitative yielded the highest rate of convergence as compared to the other policies. Also, the coarsest discretization of the state space resulted in convergence of the action-value function in as little as 200 episodes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reinforcement Learning of Morphing Airfoils with Aerodynamic and Structural Effects

This paper applies a Reinforcement Learning methodology to the problem of airfoil morphing. The reinforcement learning as it is applied to morphing is integrated with a computational model of an airfoil. The computational model utilizes a doublet panel method whose end yield is airfoil lift, drag, and moment coefficients. An episodic unsupervised learning simulation using the Q-Learning method ...

متن کامل

Morphing Airfoils with Four Morphing Parameters

An episodic unsupervised learning simulation using the Q-Learning method is developed to learn the optimal shape and shape change policy for a problem with four state variables. Optimality is addressed by reward functions based on airfoil properties such as lift coefficient, drag coefficient, and moment coefficient about the leading edge representing optimal shapes for specified flight conditio...

متن کامل

A Reinforcement Learning - Adaptive Control Architecture for Morphing

This paper develops a control methodology for morphing, which combines Machine Learning and Adaptive Dynamic Inversion Control. The morphing control function, which uses Reinforcement Learning, is integrated with the trajectory tracking function, which uses Structured Adaptive Model Inversion Control. Optimality is addressed by cost functions representing optimal shapes corresponding to specifi...

متن کامل

Reinforcement Learning for Active Length Control of Shape Memory Alloys

The ability to actively control the shape of aerospace structures has initiated research regarding the use of Shape Memory Alloy actuators. These actuators can be used for morphing or shape change by controlling their temperature, which is effectively done by applying a voltage difference across their length. The ability to characterize this temperature-strain relationship using Reinforcement L...

متن کامل

Reinforcement Learning for Characterizing Hysteresis Behavior of Shape Memory Alloys

The ability to actively control the shape of aerospace structures has spawned the use of shape memory alloy actuators. These actuators can be used for morphing or shape control by modulating their temperature, which is effectively done by applying a voltage difference across their length. Characterization of this temperature–strain relationship is currently done using constitutive models, which...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JACIC

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2010